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Abstract

A previously used one-dimensional Turbulent Di�usion-model is extended to two dimensions. A
quasi-stationary annular dispersed gas/liquid ¯ow is simulated by adding the contributions for di�erent
particle sizes of a large number of annular line sources from roll wave tops in the upstream direction.
One or more local maxima in the droplet concentration are predicted, if droplet sources are present all
along the tube wall. A local maximum in the concentration has been found in experiments as well, but it
was always solely attributed to the presence of a secondary gas ¯ow. The droplet deposition ¯ux as
calculated in the two-dimensional model shows good agreement with a previously derived analytical
expression for the droplet deposition ¯ux. Finally we derive how the two-dimensional deposition ¯ux
depends on the Stokes- and Froude-numbers. For an arbitrary Froude-number it is predicted droplets
up to which Stokes-number are able to deposit at the top of the tube. 7 2000 Elsevier Science Ltd. All
rights reserved.

Keywords: Particle deposition; Particle dispersion; Deposition rate; Turbulent di�usion; Annular ¯ow; Horizontal
¯ow

1. Introduction

The present paper is an extension of the work of Binder and Hanratty (1992) and Mols and
Oliemans (1998) on dispersion and deposition of droplets in horizontal annular ¯ow. The
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background of this work is the prediction of the deposition ¯ux of droplets for horizontal
annular dispersed gas/liquid ¯ows. Fig. 1 shows the entrainment/deposition-mechanism in a
horizontal annular dispersed gas/liquid ¯ow.
Droplets can entrain from the liquid ®lm, enter the turbulent gas core and after some time

they can deposit on some place on the annular liquid ®lm. This is one of the mechanisms that
have been proposed to explain the annular character of the ®lm (Fukano and Ousaka, 1989;
Laurinat et al., 1985; Mols, 1999). In this paper we focus on the prediction of the deposition
¯ux for droplets up to a diameter of 200 mm. The motion of larger droplets is almost totally
determined by the in¯uence of gravity and the initial velocity with which a droplet is entrained
from the liquid ®lm. Droplets between 120 and 200 mm are both in¯uenced by turbulence and
by gravity, and still form a signi®cant part of the droplet size distribution in a horizontal
annular dispersed gas/liquid ¯ow (Mols, 1999).
Binder and Hanratty (1992) use a one-dimensional Turbulent Di�usion-model to calculate

dispersion and deposition of particles in a channel ¯ow. They solve a one-dimensional
convection/di�usion-equation numerically, while simultaneously solving an equation for the
time-evaluation of the particle deterministic gravitational settling velocity. The di�usion part of
the convection/di�usion-equation represents the in¯uence of the turbulent eddies, whereas the
convective part represents the in¯uence of gravity on the particles. Particles are emitted with a
certain initial velocity from an instantaneous source at the bottom and can deposit at either of
the perfectly absorbing walls. They use a time-dependent di�usivity and free fall velocity, and
calculate instantaneous and fully developed concentration pro®les, as well as deposition rates
and deposition constants.
The method used by Mols and Oliemans (1998) di�ers from the approach of Binder and

Hanratty (1992) in two aspects. First, the particle di�usion coe�cient and the gravitational

Fig. 1. The entrainment/deposition-mechanism in a horizontal tube.
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settling velocity are assumed to be time-independent by Mols and Oliemans. This assumption
has the advantage that the one-dimensional problem then can be solved analytically. It
furthermore has the advantage that an analytical two-dimensional deposition ¯ux in a tube can
be calculated which contains the relevant physical parameters of the problem that are hidden
in generally used empirical correlations: the Stokes-number and the Froude-number. The
Stokes-number S is the ratio of the particle time scale tp and the ¯uid time scale TL,
characterising the response of particles on the ¯uid turbulence. The Froude-number Fr� is
de®ned as (u�)2/gH, where u� is the friction velocity, g the acceleration of gravity and H the
height of the channel. Second, Mols and Oliemans (1998) use a particle di�usion coe�cient
that is equal to the ¯uid di�usivity for Stokes numbers smaller than one, but that decreases
relative to the ¯uid di�usivity with increasing Stokes number. This is contrary to previously
used models for annular ¯ows, where a particle di�usivity equal to the ¯uid di�usivity was
used (Vames and Hanratty, 1988; Lee et al., 1989b; Paras and Karabelas, 1991; Binder and
Hanratty, 1992; Hay et al., 1996).
Mols and Oliemans (1998) also extended the one-dimensional analytical result for the

deposition ¯ux of particles to two dimensions by assuming that the concentration on a
horizontal line is constant. In the two-dimensional Turbulent Di�usion-model that is presented
in this paper, a two-dimensional deposition ¯ux can be explicitly calculated without any
assumption on the particle concentration.
Lee et al. (1989a) have considered a two-dimensional Turbulent Di�usion-model for a

vertical tube-¯ow. This case di�ers from the problem that we consider in this paper because
there is no gravity present. The two-dimensional di�usion-equation in cylindrical coordinates
can then be solved analytically, whereas for a horizontal tube ¯ow gravity causes the problem
to be asymmetric, so that no analytical solution can be found. Therefore a numerical method is
used in this paper to solve the two-dimensional convection/di�usion-equation. The biggest
advantage of the two-dimensional model that we present in this paper is that any arbitrary
arrangement of droplet sources along the tube circumference can be considered, so that much
more realistic concentration pro®les and deposition ¯uxes can be calculated than in a one-
dimensional model.
The rest of this paper is organised as follows. In section 2 we present the two-dimensional

Turbulent Di�usion model. Section 3 contains the main results that we have got from the two-
dimensional Turbulent Di�usion-model. Finally, the most important conclusions are drawn in
section 4.

2. The two-dimensional Turbulent Di�usion-model

2.1. Convection/di�usion-equation in cylinder coordinates

The Turbulent Di�usion (TD)-model and its assumptions have been extensively de®ned in
Mols and Oliemans (1998). For the two-dimensional model the de®nition of the model and its
assumptions are still the same. The most important assumptions are that the turbulence is
assumed to be homogeneous (up to a small near wall region where the ¯uid r.m.s. velocity
rapidly goes to zero) and that particles move in the streamwise direction at the same velocity
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as the ¯uid. The streamwise ¯uid velocity is assumed to be uniform and the tube wall is
perfectly absorbing. The relevant length and time scales of the problem under consideration are
given in Tables 1 and 2.
We consider the problem of dispersing and depositing particles in the two-dimensional cross-

section of a tube. The general convection-di�usion-equation describing the particle dispersion
in a turbulent ¯ow in the presence of gravity is then given by:

@C

@t
� �vg � r�C � r � �DprC �: �1�

C is the particle concentration, t is the time, Dp the particle di�usion coe�cient and vg the
convective particle velocity due to gravity, i.e. the particle free fall velocity. The stationary
value of vg equals gtp, where g is the acceleration of gravity and tp the particle relaxation time.
Dp and vg can be time-dependent. Dp can also be spatial-dependent or even anisotropic. Using
cylinder-coordinates (r, f ) and making use of the approximation that the velocity ®eld is
divergence free (t�vg=0), Eq. (1) can be written in conservative form:
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u is the convective velocity component in the r-direction and v the convective velocity
component in the f-direction. Eq. (2) is made dimensionless in the same way as in Binder and
Hanratty (1992):
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u� is the friction velocity, RE is the average rate of droplet entrainment in kg/(m2s) and R is
the radius of the tube. The form of the equation in dimensionless quantities is identical to Eq.
(2).
The boundary condition that we apply is the so called di�usion-free ¯ight-boundary

condition: High-inertia particles are assumed to reach the boundary layer by turbulent
di�usion and to pass through the boundary layer by a so called free ¯ight process (Mols and
Oliemans, 1998). The boundary condition in cylinder coordinates is formulated as

ÿDp
@C

@r

����
R

� nCR, �4�

where CR is the concentration at the wall and @C
@ r jR the gradient of the concentration at the

Table 1
Length scales

Tube diameter 5� 10ÿ2 m
Eulerian eddy length scale 5� 10ÿ3 m
Kolmogorov length scale O (100) mm
Particle diameter 10 mm <dp< 200 mm
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wall. This is a phenomenological way of modelling the perfectly absorbing boundary condition
in terms of the particle concentration. The free ¯ight velocity n is calculated by:

n � 1

2

����
2

p

r �����������������D
�v 0p �2

E
,

r
�5�

where the mean square ¯uctuating particle velocity h(v 'p)2i is calculated according to Hinze
(1975)D

�v 0p �2
E

D
�v 0f �2

E � 1

1� S
: �6�

h(v 'f )2i is the mean square ¯uctuating ¯uid velocity and S the particle Stokes-number.

2.2. Modelling the particle di�usion coe�cient

Having introduced the mathematical model for the convection-di�usion problem, we now
need a physical model for the particle di�usion coe�cient. In previous models and
measurements of particle dispersion in annular ¯ows (Vames and Hanratty, 1988; Lee et al.,
1989b; Paras and Karabelas, 1991; Binder and Hanratty, 1992; Hay et al., 1996) it was
presupposed or concluded that the di�usivity of particles is roughly equal to or larger than the
di�usivity of the ¯uid. Although Lee et al. (1989b) ®nd for 150 mm particles a signi®cantly
reduced particle di�usivity with respect to the ¯uid, they contribute this either solely due to
gravity or to the fact that particles have not been long enough in the ¯ow, presupposing that
they should ®nd particle di�usivities equal to the ones for homogeneous isotropic stationary
turbulence. Vames and Hanratty (1988) found for 90 mm particles also a reduced particle
di�usivity, but contribute this to an experimental error as they did not ®nd reduced particle
di�usivities for lower inertia particles.
The presupposition that the particle di�usivity is roughly equal to the ¯uid di�usivity is

based on experimental and theoretical results for homogenous isotropic turbulence (Reeks,
1977; Pismen and Nir, 1978). However, in Mols (1999) it was shown that there is an important
di�erence between results in homogeneous isotropic stationary turbulence (without a mean
¯ow) and the results in bounded ¯ows where a mean ¯ow is present. There it is shown that the
wall normal particle di�usivity decreases with increasing particle inertia for wall bounded ¯ows
driven by a pressure gradient. This is a combination of three e�ects: (1) crossing trajectories
e�ect plus the related continuity e�ect due to the velocity di�erence between particle and ¯uid
in the streamwise direction; (2) bounded ¯ows lead to limited length and time scales compared

Table 2
Time scales

Integral ¯uid time scale O (10ÿ3) s
Particle relaxation time (dp=10 mm) O (10ÿ4) s
Particle relaxation time (dp=200 mm) O (10ÿ1) s
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with homogeneous isotropic ¯ows; and (3) crossing trajectories e�ect due to gravity for a
horizontal ¯ow, and crossing trajectories plus continuity e�ect for a vertical ¯ow.
Both the crossing trajectories e�ect and the continuity e�ect caused by gravity have been

investigated by Csanady (1963). The crossing trajectories e�ect is related to the fact that in the
presence of a large drift velocity the ¯uid time scale seen by the particle is reduced. The
continuity-e�ect is the e�ect that a particle that is falling through an eddy, let us assume in the
z-direction, and ®rst experiences ¯uid velocities in, let us assume, the plus-x-direction, next
experiences ¯uid velocities in the minus-x-direction: the particle falls into the back¯ow of the
eddy. The dispersion in the x-direction is thus reduced. Whereas the crossing trajectories e�ect
works equally in all directions, the continuity-e�ect only works in the direction normal to the
drift velocity. Although the continuity e�ect is physically inseparable from the crossing
trajectories e�ect, it is for conceptual purposes illustrative to separate them. More details of
these e�ects can be found in Mols (1999). As the streamwise particle velocity in annular ¯ows
is about 20% smaller than the streamwise ¯uid velocity (Azzopardi, 1997), e�ect (1) can reduce
particle di�usivity up to 60% (for S=80), even without a crossing trajectories e�ect caused by
gravity (Mols, 1999).
The model for the particle di�usivity that we use in this paper is the same as the one used in

Mols and Oliemans (1998). It is partly based on LES-data for particle di�usivity in a tube ¯ow
(Uijttewaal and Oliemans 1996), implicitly taking into account the ®rst two of the three before
mentioned e�ects, and partly on a theoretical analysis by Csanady (1963), taking into account
the third e�ect. As in Mols and Oliemans (1998) the particle di�usivity Dp is related to the
¯uid di�usivity Df according to:

Dp � gvggDf : �7�
The ¯uid di�usivity is given by (Taylor, 1921):

Df �
�1
0



v 0f�0�v 0f�t�

�
dt �

D
�v 0f �2

E
TL, �8�

where v 'f is the ¯uctuating velocity of the ¯uid. The ¯uid mean square velocity is approximated
by D

�v 0f �2
E
� �0:7u��2: �9�

For the term gv we write again:

gv �
1������������������������

1� �tp=TL�
p : �10�

The factor gv is the results of the before mentioned e�ects (1) and (2). It should be noted that
Eq. (10) is the result of a rough ®t to LES-data for a tube ¯ow (Uijttewaal and Oliemans,
1996) and that it is not a result of some theoretical analysis of the e�ects (1) and (2) on the
particle di�usivity. We have now used the notation gv instead of ginert (Mols and Oliemans,
1998) because, although the term depends on the particle inertia, the physical cause for the
reduction of the particle di�usivity is mainly the crossing trajectories e�ect plus the related
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continuity e�ect induced by the velocity di�erence in streamwise direction between particle and
¯uid (Mols, 1999).
The presence of a gravity causes another crossing trajectories e�ect that has already been

recognised by Csanady (1963). gg is the result of this third e�ect, where the subscript g now
denotes that this crossing trajectories term is caused by gravity. The crossing trajectories
coe�cient gg is then given by (Mols and Oliemans, 1998):

gg �
1������������������������������

1�
�
gtpTL

L

�2
s : �11�

The crossing trajectories e�ect due to gravity starts to reduce the particle di�usivity when the
free fall velocity is of the order of, or larger than, the magnitude of the ¯uid r.m.s. velocity.
This is for particles approximately larger than 140 mm (Mols and Oliemans, 1998). For
situations where the free fall velocity is signi®cantly smaller than the ¯uid r.m.s. velocity, the
e�ect is negligible. In the simulations that we have performed, the particles are smaller than
140 mm and vg is smaller than the ¯uid r.m.s. value except for the case S = 100, Fr�=10.
Therefore the crossing trajectories factor due to gravity is not taken into account in the present
calculations.
Whereas Binder and Hanratty (1992) use a time-dependent particle di�usivity, we use a time-

independent one, only for reasons of simplicity. The numerical method of solution (Finite
Volume Method) that we use to solve the two-dimensional convection/di�usion-problem (2)
with the boundary condition (4) and some chosen initial condition is explained in Mols (1999).
This method can still be used if the particle di�usivity and the particle deterministic fall
velocity are time-dependent.

3. Results

This section presents the results of the two-dimensional TD-model. First a comparison is
made between results from our two-dimensional model and results from the one-dimensional
TD-model of Binder and Hanratty (1992) with a single source of droplets at the bottom as
initial condition. Second, contour plots for the concentration in the tube-cross section resulting
from multiple initial sources of droplets are compared with experimental results for droplet
¯uxes in horizontal annular dispersed gas/liquid ¯ow. Finally, a fully developed quasi-
stationary ¯ow is simulated and a two-dimensional deposition ¯ux is calculated for di�erent
values of S and Fr�.

3.1. Comparison between one- and two-dimensional TD-results

Binder and Hanratty (1992) have calculated concentration pro®les for di�erent combinations
of S and Fr� in a one-dimensional model with an instantaneous source of droplets at the
bottom wall as initial condition. For the same combinations of S and Fr�, and for the same
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initial concentration (an instantaneous source of droplets at the bottom of the tube), we have
calculated concentration pro®les along the vertical diameter of the tube cross-section.
Before comparing the results from the two-dimensional TD-model with results from the one-

dimensional TD-model of Binder and Hanratty, we ®rst summarise the di�erences between
these two models. Apart form the di�erence in the geometry, we use (1) a di�erent model for
the particle di�usion coe�cient (see Section 2.2), (2) we do not use an initial entrainment
velocity, (3) we use a stationary fall velocity instead of a time-dependent one and (4) we use a
stationary particle di�usivity instead of a time-dependent one.
The di�erences (1), (2) and (3) are expected to lead to particles reaching lower positions in

our two-dimensional model as compared to the model of Binder and Hanratty. Di�erence (4)
leads to particles reaching higher positions in the tube ¯ow. These two e�ects are competing.
In Table 3 it is seen that for all the times the particle di�usivity used in the two-dimensional
model is smaller than the corresponding one in the one-dimensional model. DpBH is the particle
di�usivity used by Binder and Hanratty and D1pBH is the stationary value of this particle
di�usivity. In this table we have calculated the value of DpBH/Df for all the three moments in
time: x/H=10, 20, 30, according to:

DpBH�t� � Df

�
1ÿ exp

�
ÿ t

tp

��
: �12�

x/H is the ratio between the distance travelled downstream by the particles and the channel
height. The distance travelled downstream in the channel is equal to the time multiplied by the
average gas velocity. For S=1, the stationary particle di�usivity is reached very rapidly. Only
for S=100, Fr�=10 it is very important to take the time-dependency of the particle di�usivity
into account.
In Figs. 2, 4, 6 and 8 results of the two-dimensional TD-model are given for the same Stokes

and Froude-numbers as Binder and Hanratty used in their one-dimensional TD-model: S= 1,
S = 100 and Fr�=10, Fr�=100. The particle and ¯uid characteristics that we use are listed in
Table 4. The results of Binder and Hanratty are given in Figs. 3, 5, 7 and 9. The concentration
pro®les for the two-dimensional model are shown for three di�erent distances travelled
downstream in the tube: x/R = 10, 20, 30, where R is the tube diameter. They are compared
with the corresponding concentration pro®les in the channel ¯ow for x/H = 10, 20, 30, where
H is the channel height. We will compare the results of the two models qualitatively.
Three conclusions can be drawn from all the results. First there is a striking di�erence

Table 3
Particle Stokes number (S ), particle relaxation time (tp), ¯uid Froude-number (Fr �). The last three columns give

DpBH/D
1
pBH at three moments in time

S tp(s) Fr � x/H=10 x/H=20 x/H=30

1 7.0� 10ÿ4 10 1 1 1
1 5.1� 10ÿ5 100 1 1 1
100 7.0� 10ÿ2 10 0.2 0.3 0.4

100 5.1� 10ÿ3 100 0.91 0.99 1
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in the behaviour of the concentration pro®le at the bottom wall. From Eq. (4) it follows
that the gradient of the concentration at the wall is determined by the ratio n/Dp. The
free ¯ight velocity n that we use is the same as the one used by Binder and Hanratty, but the
particle di�usivity that we use is smaller than the stationary ones used by Binder and Hanratty
as can be seen in Table 4. Even if we take into account that the particles in the channel ¯ow
have a time-dependent di�usivity, the di�usivities used in the two-dimensional TD-model are
smaller than the corresponding ones for the channel ¯ow, as was seen in Table 3. This leads to
a larger ratio n/Dp, and thus to a larger gradient in the concentration at the wall. Second,
despite the a priori expectation that in our two-dimensional model particles are expected to
come not as high as in the one-dimensional model, the opposite is found for the cases S=1 &
Fr�=10, S=1 & Fr�=100 and S=100 & Fr�=100. The only cause that is left to explain this
result, is the fact that we consider di�usion of particles in two dimensions instead of in one

Fig. 2. Concentration pro®les (scaled with the initial concentration) on the vertical centre-line, calculated in the two-
dimensional TD-model; S=1 and Fr �=10; R is the tube diameter.

Fig. 3. Concentration pro®les calculated by Binder and Hanratty for Fr �=10 and S= 1; with initial velocity; RA is
a constant value equal to the entrainment rate.
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Fig. 4. Concentration pro®les (scaled with the initial concentration) on the vertical centre-line, calculated in the two-

dimensional TD-model on the vertical centre-line; S=1 and Fr �=100; R is the tube diameter.

Fig. 5. Concentration pro®les calculated by Binder and Hanratty for Fr �=100 and S = 1; with initial velocity; RA

is a constant value equal to the entrainment rate.

Table 4
Particle Stokes number (S ), particle relaxation time, ¯uid Froude-number (Fr �), particle di�usion coe�cient (Dp)

used in two-dimensional TD-model, and particle di�usion coe�cient (DpBH) used by Binder and Hanratty

S tp Fr � Dp (m2/s) DpBH=Df (m
2/s) DpDpBH

1 7.0� 10ÿ4 10 1.18� 10ÿ3 1.68� 10ÿ3 0.70
1 5.1� 10ÿ5 100 8.60� 10ÿ4 1.22� 10ÿ3 0.70
100 7.0� 10ÿ2 10 1.67� 10ÿ4 1.68� 10ÿ3 0.10

100 5.1� 10ÿ3 100 1.21� 10ÿ4 1.22� 10ÿ3 0.10
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dimension. Only for S= 100 & Fr�=10 particles reach higher positions in the channel. Third,
the total particle concentration decreases slightly more rapid then in the one-dimensional
model. This leads to a larger deposition coe�cient in the two-dimensional model, because
particles are more in¯uenced by the presence of the wall in a tube than in a channel.
The two-dimensional TD-results show that the concentration pro®les for increasing

Froude-numbers, i.e. a larger in¯uence of turbulent di�usion, di�er from each other as is
expected. Binder and Hanratty, however, found in their one-dimensional TD-model the
same concentration pro®les for the combination S= 1, Fr�=10 as for the combination S=
1, Fr�=100: Figs. 3 and 5 are exactly equal. This cannot be due to the di�erent model for the
particle di�usivity, since the particle di�usivity used in the two-dimensional model is smaller
than the one used by Binder and Hanratty. The determination of the free ¯ight velocity is the

Fig. 6. Concentration pro®les (scaled with the initial concentration) on the vertical centre-line, calculated in the two-
dimensional TD-model; S=100 and Fr �=10; R is the tube diameter.

Fig. 7. Concentration pro®les calculated by Binder and Hanratty; Fr �=10 and S= 100; with initial velocity; RA is
a constant value equal to the entrainment rate.
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same for both the one-dimensional and the two-dimensional TD-model. It is not understood
why the one-dimensional TD-model of Binder and Hanratty gives the same concentration
pro®les for S=1, Fr�=10 and for S=1, Fr�=100.
To ®nish this section we now consider the particle concentration in the whole cross-section

of the tube for the case S = 30, Fr�=50. As initial condition we have again used a single
source at the bottom of the tube.
Figure 10 shows the contour plot of the concentration of particles along the vertical

diameter. The lines shown are the iso-concentration lines, connecting points with an equal
particle concentration. In the middle of the inner circle the concentration is the highest and at
the walls the concentration is almost zero. Fig. 11 shows the concentration on a vertical line
through the centre. The global maximum in the concentration pro®le corresponds to the

Fig. 8. Concentration pro®les (scaled with the initial concentration) on the vertical centre-line, calculated in the two-
dimensional TD-model; S=100 and Fr �=100; R is the tube diameter.

Fig. 9. Concentration pro®les calculated by Binder and Hanratty; S=100 and Fr �=100; with initial velocity; RA is
a constant value equal to the entrainment rate.
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midpoint of the small circles in the contour plots. It is seen that no particles are present in the
upper half of the tube.

3.2. Multiple annular particle sources

In the previous section the time-dependency of the particle concentration resulting from a
single source of particles at the bottom was studied. Annular ¯ow, however, can be considered
as the sum of a lot of these sources both distributed along the tube wall, and in the streamwise
direction. The advantage of the two-dimensional TD-model that we have introduced is that we

Fig. 10. Contour plot for S = 30, Fr �=50. Iso-concentration lines from top to bottom: 1 � 10ÿ11, 1 � 10ÿ10, etc.
till 0.1.

Fig. 11. Concentration pro®les (scaled with the concentration) on the vertical centre-line for S=30 and Fr �=50.
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can put sources on arbitrary places along the tube wall. As the e�ect of sources placed along a
tube wall has not been investigated before, this is the subject of the present section.
To mimic droplet entrainment from a liquid ®lm with varying thickness, we now consider in

our two-dimensional model initial sources that are distributed all around the tube wall in each
grid cell located at the wall. The intensity of these sources decreases towards the top in two
steps: For 0 < f < 5

12p the initial concentration is arbitrarily chosen as C+
init=20 in each grid

cell. For al the gridpoints within 5
12p < f < 5

6p, C �init � 10, and for all the gridpoints within
p < f < 5

6p, C
�
init � 5: As there is little experimental information available on the strength of

the droplet sources, we want to investigate in the ®rst place the qualitative e�ect of an annular
distribution of sources with decreasing strength towards the top. If u� is of the order of 1 m/s,
and a typical entrainment rate RE in annular ¯ow is of the order of 0.1 kg/(m2 s) (Azzopardi,
1997), then it follows form Eq. (3) that a dimensionless concentration of 20 corresponds to a
physical concentration of 2 kg/m3. Concentrations measured by Paras and Karabelas (1991) at
the bottom wall vary between 0.4 and 2.6 kg/m3 depending on the liquid and gas velocity that
are used.
Besides an annular distribution of droplet sources, we also add the contribution of three

annular line sources placed upstream. For the moment we consider the concentration
distributions resulting from annular line sources placed at three di�erent positions upstream: x/
R = 10, 30 and 90. The total concentration pro®le that we calculate is the result of three
annular line sources placed at di�erent positions upstream for two particle types, S= 1 and S
= 21, corresponding to 20 and 100 mm particles. In Fig. 12 the result from this ®rst
approximation of quasi-stationary annular ¯ow is shown.
In Fig. 13 a three-dimensional plot of the concentration in the tube is shown for 20 and

100 mm particles with initial sources all around the tube wall and at three positions the
upstream direction. The global maximum and the local minimum can be clearly seen. The
increase of droplet concentration towards the wall is due to the annular initial source
distribution.
We now want to make a qualitative comparison between these two-dimensional results for

the particle concentration and experimental results from Williams et al. (1996) for a horizontal
annular dispersed gas/liquid ¯ow in a tube with a diameter of 9.53 cm. Fig. 14 shows a result
of experiments by Williams et al. (1996) for the particle ¯ux in a horizontal annular dispersed
gas/liquid ¯ow. It should be noted that in these experiments not only the deposition-
mechanism is present but that the particle ¯ux that is shown can also be in¯uenced by the
entrainment along the wall and by the secondary gas ¯ow. In these experiments an axial ¯ux of
droplets was measured. This ¯ux is equal to the concentration multiplied by the velocity of the
droplets in the streamwise direction. In the TD-model it is assumed that the average ¯uid
velocity (as well as the average particle axial velocity) is constant over the whole cross-section
of the tube, which means that the concentration should be multiplied with the uniform gas
velocity in order to get the particle ¯ux. However, measurements of Dykhno et al. (1994) in a
horizontal 9.53 cm tube indicate a more or less parabolic axial average ¯uid velocity pro®le,
with a lower average velocity in the lower half (due to the larger shear at the more wavy
bottom interface) and a higher average velocity in the upper half (due to the less wavy top
interface). For a small amount of atomisation the top of the parabola lies in the bottom part
of the tube, whereas for a large amount of atomisation the top shifts to the upper part of the
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tube. This velocity pro®le should be taken into account when interpreting the measured values
for the droplet ¯ux in terms of droplet concentration.
As the value of the concentration also depends on the unknown initial source strengths, the

results for the measured particle ¯uxes can not be compared quantitatively with the particle
concentrations for the two-dimensional model. Qualitatively, however, a comparison can be
made between the two-dimensional concentration pro®les and the ¯uxes measured by Williams
et al. (Fig. 14).
Comparing the results shown in the Figs. 12 and 13 with the experimental result shown in

Fig. 14 we notice that in both cases the droplet concentration increases when going to the
walls. For the experimental results this might partly be due to the presence of droplets sources
at the wall, and partly due to a secondary gas ¯ow in the upward circumferential direction at
the wall. For the two-dimensional result this can only be due to the annular source distribution
that was assumed. Looking at the central part of the ¯ow, we see that in both cases a local
maximum is found. In both the experimental results and in the TD-results there is a circle in
the central part with a lower concentration than the surrounding ¯ow. Above this local
minimum, there is a local maximum. There is also an important di�erence. In the result of
Williams et al. the local maximum lies at two sides of the vertical centre line. Probably, a
secondary gas ¯ow, with two cells in the plane of a tube cross-section, is responsible for
splitting a single local maximum into two. But the local maximum that occurs at y/R= 0.6 in
Fig. 14 can also be explained by the fact that the distribution of droplet sources has got more

Fig. 12. Contour plots for the summed contribution of S = 1 and S = 21, Fr �=5 (20 and 100 mm particles) with
several sources all around the tube wall and in the ¯ow direction. The circle above the centre point is a local

minimum (0.12), the inner circle at the bottom half is the maximum (0.2). Concentration levels from 0.04±0.2 in
steps of 0.02. The circle in the centre has the same value as the ®fth line counted from the top of the tube.
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Fig. 13. Three-dimensional concentration pro®le for the combination of 20 and 100 mm particles. Three initial
annular sources in the stream wise direction. R is the tube radius. The global maximum and the local minimum are
visible as well as the particle increase towards the walls.

Fig. 14. Experimental results of Williams et al. (1996) for the particle ¯ux (kg/m2 s). In the left part of the ®gure the
gas velocity is 33 m/s and in the right part of the ®gure the gas velocity is 45 m/s.
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annular for 45 m/s gas velocity than for 33 m/s gas velocity and is not necessarily due to the
presence of a secondary gas ¯ow as Williams et al. stated.
Fig. 15 shows two concentration pro®les for two di�erent gas velocities as measured by

Paras and Karabelas (1991). Whereas there is no local maximum for a gas velocity of 30 m/s, a
clear local maximum is found for 45 m/s gas velocity. The drawn lines are the result of a one-
dimensional model. It is seen that a one-dimensional model is not able to predict the local
maximum in the concentration. This is in accordance with our hypothesis that the local
maximum is the result of the fact that the liquid ®lm is more annular at 45 m/s than at 30 m/s,
so that droplets start to entrain along a large part of the tube circumference. For 30 m/s the
entrainment of droplets is only at the bottom of the tube and no local maximum is found, as
there were no local maxima in the concentration pro®les of Section 3.1.
It is not expected that the local maximum for 45 m/s gas velocity is due to secondary gas

¯ow, as the in¯uence of the secondary gas ¯ow decreases with increasing gas velocity.
However, the local maximum might partly be caused by the average axial gas velocity pro®le
that shows a maximum in the upper part of the tube at high gas velocities (Dykhno et al.,
1994). The concentration shown in Fig. 15 is calculated from the measured particle ¯ux divided
by a uniform gas velocity. The assumption of a uniform gas velocity leads to an overprediction
of the concentration in the top part if the real gas velocity pro®le shows a maximum in the top
part.

3.3. Simulation of a fully developed horizontal annular dispersed gas/liquid ¯ow

In the previous section the total concentration was calculated as the sum of the contributions
of two particle sizes placed at three positions downstream of the tube (with some source
distribution along the tube wall). Although this gave a ®rst indication of the concentration
pro®les for a quasi-stationary two-dimensional annular ¯ow, it is possible to simulate a fully
developed horizontal annular dispersed gas/liquid ¯ow. This is the subject of the present
section. The method of adding the contributions of multiple initial sources placed at di�erent

Fig. 15. Concentration pro®les along the vertical diameter showing the local maximum in the concentration for
UG=45 m/s and r/R1 0.25; R is the tube radius. Results obtained by Paras and Karabelas (1991).
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positions upstream, has already been used by Binder and Hanratty (1992). Our two-
dimensional model, however, has the advantage that at each upstream position an annular line
source with an arbitrary arrangement of source strengths can be assumed, thus simulating the
presence of an annular liquid ®lm.
We now assume that droplets are mainly entrained from the tops of the roll waves that are

present on the liquid ®lm. The wavelength of these roll waves is approximately 100 times the
height of the liquid ®lm. Assuming a typical height of the liquid ®lm at the bottom of 3 mm,
roll waves will typically have a wavelength of 30 cm. Depending on whether or not the liquid
®lm is fully annular (i.e. depending on the average gas velocity), sources should be distributed
all along the tube wall (in the case of an annular liquid ®lm) or up to a certain height (in the
case of a partly annular liquid ®lm). The total concentration C(x, t ) at a position x at a time t
is now given by

C�x, t� �
X
i

X
f

Ci, f

�
t 0 � xj

H

�
, �13�

where Ci,f (t '=xj/H ) is the concentration of particles with a size i (starting at a circumferential
angle f ) at a position x after a time (t ') corresponding to xj/H tube diameters travelled
downstream. If we assume that the axial position x at which we want to calculate the
concentration lies in the middle of two roll wave-tops, then:

xj �
�
jÿ 1

2

�
l, �14�

with l the wavelength of a roll wave, and j=1, 2, 3 . . . , denoting the jth roll wave-top counted
in the upstream direction.
For our simulation of a fully developed annular dispersed gas/liquid ¯ow we assume a

particle size distribution as sketched in Fig. 4.1 in Mols (1999). We consider particles up to a
diameter of 150 mm. For these particles the size distribution is approximately linear. We now
cut the distribution in eight parts, each part corresponding with a certain particle diameter: 10,
30, 50, 70, 90, 110, 130 and 150 mm. In the upstream direction the annular line sources are
distributed at 15 positions: x/H = 3 . . .88 in steps of x/H = 6, corresponding to the roll wave
length of 30 cm. So, the ®rst roll wave top occurs at x/H=3, the second at x/H=9, the third
at x/H = 15, etc. The position x at which the concentration is determined, corresponds to the
middle of two roll wave tops. The intensity of the sources on every annular line source
decreases from bottom to top in the same way as described in Section 4.2.
Figs. 16±19 show the results for the 10, 50, 90 and 110 mm particles. We see that for the

10 mm particles the contour plots for the concentration show a single (global) maximum close
to a part of the bottom wall. For the 50 mm particles there is a local maximum in the centre of
the tube and the global maximum at the bottom has split into two parts. For the 90 mm
particles there are two local maxima and for the 110 mm particles even three.
Fig. 20 shows the result for the approximated fully developed horizontal annular dispersed

gas/liquid ¯ow. Due to the distribution of sources all around the tube wall, the concentration
at the wall is relatively high. There is a local maximum in the centre of the tube, and there are
local maxima at the sides.
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Fig. 16. Contour plot for the 10 mm particles showing only one (global) maximum.

Fig. 17. Contour plot for the 50 mm particles with a global maximum almost on the bottom and a local maximum
just below the tube centre.
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Fig. 18. Contour plot for the 90 mm particles with a global maximum at the bottom and two local maxima.

Fig. 19. Contour plot for the 110 mm particles with a global maximum at the bottom and two local maxima.
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3.4. The two-dimensional deposition ¯ux

In modelling a horizontal annular dispersed gas/liquid ¯ow it is important to have an
accurate expression for the particle deposition ¯ux describing the amount of deposited material
at a certain circumferential position (Mols, 1999). In our two-dimensional TD-model this
deposition ¯ux can be calculated explicitly.
Mols and Oliemans (1998) have derived a general form for the deposition ¯ux by extending

the analytical one-dimensional solution to a two-dimensional result, assuming that the
concentration on a horizontal line is more or less constant. This assumption is based on
experimental results of Paras and Karabelas (1991). The analytically derived deposition ¯ux is
given by:

RD�f, tp� � kD�f, tp� � exp

�
1

4
P�cos fÿ 1�

�
: �15�

P is the Peclet-number for the convection-di�usion problem (Mols and Oliemans, 1998) given
by

P � gtp

Dp

� 2R: �16�

f is the circumferential tube angle, de®ned to be 0 at the bottom. R is the radius of the tube.
The Peclet-number characterises the ratio between the convective term due to gravity and the
di�usive term due to turbulence. For P>>1 gravity is dominant and for P<<1 turbulent
di�usion is dominant. kD(f, tp) is the local deposition constant and is de®ned as:

Fig. 20. Contour plot for the fully developed horizontal annular dispersed gas/liquid ¯ow; addition of 8 di�erent
particle sizes and 15 upstream positions.
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kD�f, tp� � cE�tp� � �n� vg cos f�: �17�
The constant cE can be determined from the fact that in a fully developed annular gas/liquid
¯ow the total entrainment ¯ux must equal the total deposition ¯ux. This results in an
expression for cE:

cE�tp� �

�p
0

RE�f, tp� df�p
0

�n� vg cos f� exp

�
1

4
P�cos fÿ 1�

�
df

�18�

cE is used to normalise the deposition ¯ux, and RE is the rate of entrainment.
From the two-dimensional TD-results a deposition ¯ux RD(f ) can be calculated according

to

RD�f� � �n� vg cos f� � Cwall�f�, �19�
Cwall(f ) is the concentration at a position (R, f ) at the wall.
How does the analytical expression (15) for the deposition ¯ux compare with results of the

two-dimensional model, where RD(f ) can be explicitly calculated without the assumption that
the concentration on a horizontal line is constant? We note that we can only make a
qualitative comparison between the result of the two-dimensional model and the two-
dimensional extension of the one-dimensional TD-model because the entrainment ¯ux RE is
unknown. We make a comparison for the same S- and Fr�-numbers as used by Mols and
Oliemans (1998) in the one-dimensional model. Tables 5 and 6 give the various particle and
¯uid characteristics that are used in both models. As in the one-dimensional model, only a
single initial source at the bottom wall is assumed.
In accordance with the numerical procedure that we have described, the deposition ¯ux RD

can then be derived from the two-dimensional results as follows:

RD� j, i� � �n
� � u�� j��C �� j, i�

C�total

, �20�

C+
total is the total concentration that is present in the tube. The calculation of the deposition

¯ux is done for times when the pro®le has become quasi-stationary. Fig. 21 gives the result of
the two-dimensional model. Fig. 22 gives the result of the model of Mols and Oliemans (1998).
Comparing these two ®gures, we see that for S = 0.2 and Fr�=4.6 the ratio between the

Table 5
Properties of the ¯uid used for the calculation of the deposition ¯ux: Froude-number; friction velocity; gas velocity;
Lagrangian integral time scale; ¯uid mean square velocity

Fr � u � (m/s) VG (m/s) TL (s) h(v 'f )2i (m2/s2)

4.6 1.5 32 1.6� 10ÿ3 1.1

14.9 2.7 62 8.1� 10ÿ4 3.57
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deposition ¯ux at the top wall and the one at the bottom wall, is smaller for the two-
dimensional TD-model than for the model derived by Mols and Oliemans. This might be a
result of the assumption made in Mols and Oliemans (1998) that the concentration on a
horizontal line is constant. It is expected that this slightly over estimates the concentration at
the wall for these relatively small particles. If we look at Fig. 20 for the fully developed
annular ¯ow, we see that the latter result does not show horizontal iso-concentration lines.
This is probably due to the absence of particles larger than 150 mm. These particles were not
included in our calculations, whereas they do form a signi®cant part of the particle size
distribution. Furthermore, these `heavy' particles are expected to be almost only in¯uenced by
gravity, so that they are expected to lead to horizontal iso-concentration lines.
The results of 50 mm particles are qualitatively the same for both models. 100 mm particles

deposit up to one-half of the top in the two-dimensional model and only up to one-third in the
one-dimensional model. For the 100 mm particles it is seen that the di�erence in the deposition
¯ux for Fr�=4.6 and Fr�=14.9 is larger in the two-dimensional model than in the one-
dimensional model.
In general it can be concluded that the deposition in ¯ux in the semi-theoretical model shows

Table 6
Properties of particles used for the calculation of the deposition ¯ux: Stokes-number; Froude-number; particle mean

square velocity; gravitational settling velocity; particle diameter; particle relaxation time

S Fr � h(v 'p)2i (m2/s2) vg (m/s) dp (mm) tp (s)

0.2 4.6 0.92 3.2� 10ÿ3 10 3.2� 10ÿ4

0.4 14.9 2.55 3.2� 10ÿ3 10 3.2� 10ÿ4

5.2 4.6 0.18 8.1� 10ÿ2 50 8.25� 10ÿ3

10.2 14.9 0.32 8.1� 10ÿ2 50 8.25� 10ÿ3

21 4.6 0.05 0.32 100 3.33� 10ÿ2

41 14.9 0.085 0.32 100 3.33� 10ÿ2

Fig. 21. Deposition ¯ux for di�erent S- and Fr �-numbers calculated from the two-dimensional TD-results.
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a good similarity with the calculated results of the two-dimensional TD-model. The two-
dimensional TD-model, however, has given us for the ®rst time the possibility to calculate two-
dimensional concentration pro®les and deposition ¯uxes without an additional assumption to
extrapolate a one-dimensional result to a two-dimensional result.
For modelling horizontal annular dispersed gas/liquid ¯ow it would be very useful to have

an expression for the particle deposition ¯ux expressed in the important dimensionless
numbers, the Stokes-number and the Froude-number. To ®nish the present analysis of the
particle deposition ¯ux, we derive an expression for RD(f, S, Fr

�) and we analyse for which
combination of S and Fr� particles can deposit at the top of the tube. Annular ¯ow model as
presented in Fukano and Ousaka (1989) or Laurinat et al. (1985) use the dimensionless
deposition ¯ux R+

D:

R�D �
RD

rlu
� : �21�

By using Eqs. (15) and (17) together with Eq. (21) and equation

P � 2:0 � S ������������
1� S
p

Fr�
�22�

for the Peclet number (Mols and Oliemans, 1998), we can derive that

R�D�f, S, Fr�� �
cE

rl

�
0:64������������
1� S
p � 0:05 � S

Fr�
� cos f

�
� exp

�
0:5 � S

������������
1� S
p

Fr�
�cos fÿ 1�

�
: �23�

In the derivation we have used the approximation TLu
�/H 1 u�/Vgas 1 0.05. In the expression

for the Peclet-number we have not included the crossing trajectories e�ect due to gravity, but it
can easily be included. From Eq. (23) it follows that particles with a certain Stokes number S
can deposit at the top if R+

D(p )> 0, which corresponds to

Fig. 22. Deposition ¯ux for di�erent S- and Fr �-numbers as calculated in Mols and Oliemans (1998).
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Fr� >
S

������������
1� S
p

12:8
: �24�

This relation can be used as a ®rst approximation to ®nd out whether particles of a certain
Stokes-number are able to reach the top in the tube for arbitrary conditions. From Fig. 23 one
can determine for every Fr� up to which Stokes-number particles can deposit at the top of the
tube.
It is important to note that high-inertia particles experience a non-linear drag, whereas the

particle relaxation time, and thus the Stokes-number S,is based on linear drag. For high inertia
particles an e�ective particle relaxation time t e�p can be de®ned as

1

teff
p

� 1

tp

CD�Rep�Rep

24
, �25�

where CD is the drag coe�cient and Rep the particle Reynolds number in the core area (about
80%) of the tube. Not taking into account the non-linear drag leads to a signi®cant
underprediction of the particle deposition at higher positions on the tube wall (Mols, 1999). In
Eqs. (23) and (24) one should therefore for high-inertia particles use a Stokes-number based on
t e�p .

4. Concluding remarks

In this paper we have shown how a two-dimensional Turbulent Di�usion-model can be used
to study dispersion and deposition of particles in a horizontal annular dispersed gas/liquid
¯ow. The two-dimensional model is an important improvement over the one-dimensional
models that have been used previously (Binder and Hanratty, 1992; Mols and Oliemans, 1998)
because it makes it possible to assume any arbitrary arrangement of droplet sources along the
tube wall.
A qualitative comparison was made between the two-dimensional TD-results for the particle

Fig. 23. Deposition at the top of the tube (for a certain Stokes-number) if Fr � above the drawn curve. Crossing
trajectories e�ect due to gravity has not been taken into account.
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concentration and measurements of droplet ¯uxes and concentration found in the literature
(Williams et al., 1996; Paras and Karabelas, 1991). It was concluded that the local maximum in
the concentration can be explained solely by the presence of droplet sources distributed along
the upper part of the tube wall as well as along the bottom part. Up till now only a secondary
gas ¯ow was held responsible for this local maximum. Although a secondary gas ¯ow might
still in¯uence the position of the local maximum or even split a local maximum into two parts
in each half of the tube-cross section, our results show that it is not a necessary condition for
the appearance of the local maximum in the particle concentration.
Whereas the analytical expression was derived under the assumption that the concentration

on a horizontal line in the tube is constant, the two-dimensional analysis is a straight forward,
and thus more accurate method to calculate the particle concentration. For particles between
10 and 100 mm the results for the two-dimensional deposition ¯ux show good qualitative
agreement with a previously derived analytical expression (Mols and Oliemans, 1998) for the
deposition ¯ux along the tube wall. Finally we have derived how the two-dimensional
deposition ¯ux depends on the Stokes- and Froude-numbers. This expression is valid for
arbitrary physical conditions.
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